Data excellence for AI
نویسندگان
چکیده
This forum provides a space to engage with the challenges of designing for intelligent algorithmic experiences. We invite articles that tackle tensions between research and practice when integrating AI UX design. welcome interdisciplinary debate, artful critique, forward-looking research, case studies in practice, speculative design explorations. --- Juho Kim Henriette Cramer, Editors
منابع مشابه
Newsletter of the European Network of Excellence in AI Planning
COMPETE (Common Platform for the ExTended Enterprise) is an ESPRIT project which started in 1999 and ended at the end of 2001. It is the result of the cooperation among different European partners: Centro Ricerche Fiat, TXT e-solutions, Cap Gemini & Ernst & Young, BAE Systems and Magneti Marelli, University Federico II of Naples. Its main objective is to integrate methods and tools to support p...
متن کاملResearch Excellence Award: Relationship Between Natural Language Processing and AI
The use of constrained formal/computational systems just adequate for modeling various aspects of language-syntax, semantics, pragmatics and discourse, among others-has proved to be not only an effective research strategy but has led to deeper understanding of these aspects, with implications to both machine processing as well as human processing. This approach enables one to distinguish betwee...
متن کاملEuropean Network of Excellence in AI Planning The PLANET Roadmap on AI Planning and Scheduling
Preface Planning and Scheduling is the field of Artificial Intelligence that is concerned with all aspects of the system-supported or fully automated synthesis, execution, and monitoring of courses of actions, activities, and tasks. With that, it provides a technology for increasing the autonomy of systems by making them more flexible, robust, and adaptive. Consequently, it has a particularly l...
متن کاملPLANET, the European Network of Excellence in AI Planning Technological Roadmap on AI Planning and Scheduling
متن کامل
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Interactions
سال: 2022
ISSN: ['1548-3320']
DOI: https://doi.org/10.1145/3517337